The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines.
نویسندگان
چکیده
Methylation of CpG sites in the control regions of tumor suppressor genes may be an important mechanism for their heritable, yet reversible, transcriptional inactivation. These changes in methylation may impair the proper expression and/or function of cell cycle regulatory genes and confer a selective growth advantage to affected cells. Detailed methylation analysis using genomic bisulfite sequencing was performed on a series of subclones of a bladder cancer cell line in which a hypermethylated p16 gene had been reactivated by transient treatment with 5-aza-2'-deoxycytidine. Methylation of the CpG island in the promoter of the p16 gene in human bladder cancer cells did not stop the formation of a transcript initiated 20 kb upstream by the p19 promoter but did prevent the expression of a p16 transcript. Furthermore, we show that reactivant clones that expressed p16 at varying levels contained heterogeneous methylation patterns, suggesting that p16 expression can occur even in the presence of a relatively heavily methylated coding region. We also present the first functional evidence that methylation of only a small number of CpG sites can significantly down-regulate p16 promoter activity, thus providing support for the model of progressive inactivation of this tumor suppressor gene by DNA methylation.
منابع مشابه
Effects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملStudy of promoter CpG island hypermethylation of cyclindependent kinase inhibitor gene p21waf1/cip1 on some breast carcinoma cell lines
The p21 belongs to the CIP/KIP family of CDK inhibitors involved in cell cycle arrest at specific stages of the cell cycle progression. DNA methylation is the best studied epigenetic mark that have been evidently associated to chromatin condensation, and repression of gene transcription. The CpG island hypermethylation in promoter region of certain genes occurs in cancer cells and affects tumor...
متن کاملاپیژنتیک سرطان پستان: مقاله مروری
Stable molecular changes during cell division without any change in the sequence of DNA molecules is known as epigenetic. Molecular mechanisms involved in this process, including histone modifications, methylation of DNA, protein complex and RNA antisense. Cancer genome changes happen through a combination of DNA hypermethylation, long-term epigenetic silencing with heterozygosis loss and genom...
متن کاملGene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells
Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. ...
متن کاملGene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells
Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 58 6 شماره
صفحات -
تاریخ انتشار 1998